Abstract
Cabai merupakan salah satu komoditas hortikultura yang memiliki nilai ekonomi tinggi, namun produktivitasnya sering terganggu oleh berbagai penyakit daun yang disebabkan oleh hama, seperti bercak daun, layu fusarium, embun tepung, dan virus kuning. Penyakit-penyakit ini tidak hanya memengaruhi kualitas hasil panen, tetapi juga menyebabkan kerugian ekonomi yang signifikan bagi petani. Untuk mengatasi permasalahan ini, dilakukan pengabdian kepada masyarakat dengan mengimplementasikan teknologi Convolutional Neural Network (CNN) untuk klasifikasi penyakit daun cabai secara cepat dan akurat. Metode yang digunakan melibatkan observasi lapangan untuk mengidentifikasi permasalahan yang dihadapi petani di Desa Lubuk Cuik, Batu Bara, Sumatera Utara. Data berupa gambar daun cabai yang terinfeksi dikumpulkan dan digunakan untuk melatih model CNN. Model yang dikembangkan, efficientChiliNet, mampu mengklasifikasikan penyakit daun cabai dengan akurasi pelatihan 99,8% dan akurasi validasi 96,5%. Aplikasi berbasis web dan desktop kemudian dibuat untuk mempermudah petani dalam mendiagnosis penyakit daun cabai secara mandiri. Aplikasi ini juga disosialisasikan kepada petani melalui pelatihan untuk memastikan implementasi teknologi yang optimal. Hasil pengabdian ini menunjukkan bahwa teknologi berbasis CNN mampu memberikan solusi efektif dalam mengidentifikasi penyakit daun cabai dan membantu petani meningkatkan produktivitas pertanian. Rekomendasi selanjutnya adalah pengembangan fitur tambahan dalam aplikasi untuk memberikan panduan penanganan hama dan integrasi teknologi Internet of Things (IoT) untuk pemantauan lingkungan secara real-time. Dengan pendekatan ini, diharapkan terciptanya modernisasi pertanian berbasis smart farming yang berkelanjutan.
Selanjutnya dapat di baca pada link berikut di bawah ini :